Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 1,1'-Methylenebis(2,3-dimethylimidazolium) dipicrate acetonitrile solvate

#### Jian Li

Department of Maths and Physics, Huangshi Institute of Technology, Huangshi, 435000, People's Republic of China Correspondence e-mail: hslijian2006@yahoo.com

Received 8 August 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.059; wR factor = 0.148; data-to-parameter ratio = 6.8.

In the title salt,  $C_{11}H_{18}N_4^{2+}\cdot 2C_6H_2N_3O_7^{-}\cdot C_2H_3N$ , the dihedral angle between the imidazolium rings in the dication is 74.4 (2)°, and the benzene rings of the two independent picrate anions are almost parallel, with a dihedral angle of 12.0 (1)° between them.

#### **Related literature**

For the synthesis of the title salt, see: Jin *et al.* (2005). For related heterocyclic organic salts used as energetic materials, see: Jin *et al.* (2006); Singh *et al.* (2006).



## Experimental

#### Crystal data

 $\begin{array}{l} C_{11}H_{18}N_4^{2+}\cdot 2C_6H_2N_3O_7^{-}\cdot C_2H_3N\\ M_r=703.56\\ Orthorhombic, P2_12_12_1\\ a=6.8715 \ (9) \ \text{\AA}\\ b=19.892 \ (3) \ \text{\AA}\\ c=22.594 \ (3) \ \text{\AA} \end{array}$ 

#### Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*<sub>min</sub> = 0.963, *T*<sub>max</sub> = 0.988

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$  $wR(F^2) = 0.148$ S = 1.023115 reflections  $V = 3088.2 (7) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.13 \text{ mm}^{-1}$  T = 292 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

24762 measured reflections 3115 independent reflections 2528 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.061$ 

 $\begin{array}{l} \text{455 parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3} \end{array}$ 

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Funds of Hubei Provincial Department of Education, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2132).

#### References

Bruker (2001). SAINT-Plus (Version 6.45), SMART (Version 5.628) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA. Jin, C.-M., Twamley, B. & Shreeve, J. M. (2005). Organometallics, 24, 3020-

3023.

Jin, C.-M., Wu, L.-Y., Han, D.-Y. & Hu, Y.-J. (2006). Acta Cryst. E62, 05619– 05620.

Sheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.

Acta Cryst. (2007). E63, o4470 [doi:10.1107/S160053680705338X]

## 1,1'-Methylenebis(2,3-dimethylimidazolium) dipicrate acetonitrile solvate

J. Li

### Comment

Polynitrogen heterocyclic organic salts with low melting points are a new class of energetic materials that has attracted considerable interest because of their "green chemistry" properties (Singh *et al.*, 2006). Imidazolium-based or triazolium-based dication picrate salts are good candidates for energetic ionic salts (Jin *et al.*, 2006). Based on this, the title organic salt (I, Fig. 1) was therefore prepared and its structure is reported here.

The asymmetric unit of the title compound contains one 1,1'-methylene-bis(2,3-dimethylimidazolium) dication, two picrate anions and one acetonitrile molecule. The dihedral angle between imidazolium rings in the dication moiety is 74.4°, and methyl groups at 2-positions in the imidazolium rings are arranged in the same direction. Benzene rings of two independent picrate anions are almost parallel, with a dihedral angle of  $12.0^{\circ}$ . In the crystal structure,  $\pi$ - $\pi$  stacking occurs between benzene rings of two different picrate anions, with the shortest separation between ring centroids being 3.767 Å. Weak C—H…O hydrogen bonding occurs between dications and picrate anions.

## Experimental

The salt  $(C_{11}H_{18}N_4)^{2+} 2 (C_6H_2N_3O_7)^-$  was synthesized using a slightly modified literature method (Jin *et al.*, 2005). The title solvate was crystallized by slow evaporation of an acetonitrile solution of the salt.

## Refinement

H atoms were positioned geometrically with C—H bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH<sub>2</sub>) or 0.96 Å (methyl CH<sub>3</sub>). A riding model was used during the refinement process. The  $U_{iso}$  parameters for H atoms were constrained to be  $1.2U_{eq}$  of the carrier C atom for aromatic and methylene groups, and  $1.5U_{eq}$  of the carrier C atom for methyl groups. Measured Friedel pairs were merged before refinement.

**Figures** 



Fig. 1. The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

## 1,1'-Methylenebis(2,3-dimethylimidazolium) dipicrate acetonitrile solvate

 $D_{\rm x} = 1.513 \text{ Mg m}^{-3}$ Mo *K* $\alpha$  radiation

Cell parameters from 3413 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.2 - 19.1^{\circ}$ 

 $\mu = 0.13 \text{ mm}^{-1}$ 

T = 292 (2) K

Block, yellow

 $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

### Crystal data

 $C_{11}H_{18}N_4^{2+} \cdot 2C_6H_2N_3O_7^{-} \cdot C_2H_3N$   $M_r = 703.56$ Orthorhombic,  $P2_12_12_1$  a = 6.8715 (9) Å b = 19.892 (3) Å c = 22.594 (3) Å V = 3088.2 (7) Å<sup>3</sup> Z = 4 $F_{000} = 1456$ 

### Data collection

| 3115 independent reflections           |
|----------------------------------------|
| 2528 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.061$                  |
| $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\theta_{\min} = 1.8^{\circ}$          |
| $h = -7 \rightarrow 8$                 |
| $k = -23 \rightarrow 23$               |
| $l = -26 \rightarrow 26$               |
|                                        |

#### Refinement

| Refinement on $F^2$                                            | H-atom parameters constrained                                                       |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | $w = 1/[\sigma^2(F_o^2) + (0.0737P)^2 + 1.7443P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $R[F^2 > 2\sigma(F^2)] = 0.059$                                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| $wR(F^2) = 0.148$                                              | $\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$                                 |
| <i>S</i> = 1.02                                                | $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$                              |
| 3115 reflections                                               | Extinction correction: none                                                         |
| 455 parameters                                                 |                                                                                     |
| Primary atom site location: structure-invariant direct methods |                                                                                     |
| Secondary atom site location: difference Fourier map           |                                                                                     |
| Hydrogen site location: inferred from neighbouring sites       |                                                                                     |

|      | x           | У          | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|------------|--------------|-------------------------------|
| C1   | 0.7131 (11) | 0.6482 (3) | 0.8910 (2)   | 0.0741 (19)                   |
| H1A  | 0.8431      | 0.6651     | 0.8955       | 0.111*                        |
| H1B  | 0.7147      | 0.6000     | 0.8931       | 0.111*                        |
| H1C  | 0.6323      | 0.6657     | 0.9221       | 0.111*                        |
| C2   | 0.4502 (9)  | 0.6533 (2) | 0.8124 (2)   | 0.0524 (13)                   |
| H2A  | 0.3555      | 0.6293     | 0.8328       | 0.063*                        |
| C3   | 0.4341 (7)  | 0.6785 (2) | 0.7583 (2)   | 0.0469 (12)                   |
| H3A  | 0.3264      | 0.6751     | 0.7335       | 0.056*                        |
| C4   | 0.7291 (7)  | 0.7041 (2) | 0.7922 (2)   | 0.0442 (11)                   |
| C5   | 0.9315 (8)  | 0.7267 (3) | 0.7962 (2)   | 0.0616 (15)                   |
| H5A  | 0.9834      | 0.7151     | 0.8343       | 0.092*                        |
| H5B  | 0.9367      | 0.7746     | 0.7911       | 0.092*                        |
| H5C  | 1.0071      | 0.7053     | 0.7658       | 0.092*                        |
| C6   | 0.6454 (8)  | 0.7456 (2) | 0.68964 (18) | 0.0450 (12)                   |
| H6A  | 0.7822      | 0.7572     | 0.6872       | 0.054*                        |
| H6B  | 0.6151      | 0.7158     | 0.6569       | 0.054*                        |
| C7   | 0.3515 (9)  | 0.8090 (3) | 0.6568 (2)   | 0.0645 (16)                   |
| H7A  | 0.2891      | 0.7739     | 0.6374       | 0.077*                        |
| C8   | 0.2870 (10) | 0.8710 (3) | 0.6629 (3)   | 0.0751 (18)                   |
| H8A  | 0.1702      | 0.8877     | 0.6482       | 0.090*                        |
| С9   | 0.5714 (9)  | 0.8665 (2) | 0.70769 (18) | 0.0489 (13)                   |
| C10  | 0.4020 (16) | 0.9780 (3) | 0.7107 (3)   | 0.110 (3)                     |
| H10A | 0.4724      | 0.9864     | 0.7467       | 0.164*                        |
| H10B | 0.2671      | 0.9886     | 0.7165       | 0.164*                        |
| H10C | 0.4540      | 1.0054     | 0.6796       | 0.164*                        |
| C11  | 0.7443 (12) | 0.8842 (3) | 0.7422 (2)   | 0.084 (2)                     |
| H11A | 0.8574      | 0.8646     | 0.7242       | 0.126*                        |
| H11B | 0.7306      | 0.8675     | 0.7818       | 0.126*                        |
| H11C | 0.7584      | 0.9322     | 0.7431       | 0.126*                        |
| C12  | 0.4963 (7)  | 0.3526 (2) | 0.1203 (2)   | 0.0406 (11)                   |
| C13  | 0.5179 (7)  | 0.3387 (2) | 0.0577 (2)   | 0.0460 (12)                   |
| C14  | 0.5718 (7)  | 0.3846 (2) | 0.0162 (2)   | 0.0460 (12)                   |
| H14A | 0.5832      | 0.3718     | -0.0233      | 0.055*                        |
| C15  | 0.6099 (7)  | 0.4507 (2) | 0.03285 (19) | 0.0397 (11)                   |
| C16  | 0.5968 (7)  | 0.4687 (2) | 0.0917 (2)   | 0.0398 (11)                   |
| H16C | 0.6232      | 0.5126     | 0.1032       | 0.048*                        |
| C17  | 0.5452 (7)  | 0.4220 (2) | 0.13298 (19) | 0.0386 (10)                   |
| C18  | 0.2943 (7)  | 0.4320 (2) | 0.47497 (19) | 0.0443 (12)                   |
| C19  | 0.2942 (8)  | 0.4199 (2) | 0.53872 (19) | 0.0441 (11)                   |
| C20  | 0.3446 (7)  | 0.4662 (2) | 0.58034 (18) | 0.0438 (12)                   |
| H20A | 0.3457      | 0.4545     | 0.6202       | 0.053*                        |
| C21  | 0.3941 (7)  | 0.5308 (2) | 0.56332 (19) | 0.0399 (11)                   |
| C22  | 0.3897 (7)  | 0.5490 (2) | 0.50438 (18) | 0.0404 (11)                   |
| H22A | 0.4177      | 0.5930     | 0.4934       | 0.048*                        |
| C23  | 0.3444 (7)  | 0.5024 (3) | 0.46242 (19) | 0.0452 (12)                   |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| N1   | 0.6344 (7)  | 0.66949 (19) | 0.83277 (16)  | 0.0471 (10) |
|------|-------------|--------------|---------------|-------------|
| N2   | 0.6081 (6)  | 0.71095 (18) | 0.74543 (15)  | 0.0404 (9)  |
| N3   | 0.5287 (6)  | 0.80642 (18) | 0.68472 (15)  | 0.0428 (10) |
| N4   | 0.4213 (8)  | 0.9066 (2)   | 0.69458 (18)  | 0.0594 (13) |
| N5   | 0.4805 (8)  | 0.2704 (2)   | 0.0365 (3)    | 0.0695 (14) |
| N6   | 0.6621 (6)  | 0.5002 (2)   | -0.01062 (18) | 0.0478 (10) |
| N7   | 0.5364 (7)  | 0.4458 (2)   | 0.19413 (17)  | 0.0557 (11) |
| N8   | 0.2372 (9)  | 0.3548 (2)   | 0.5608 (2)    | 0.0697 (14) |
| N9   | 0.4476 (6)  | 0.5793 (2)   | 0.60762 (19)  | 0.0507 (11) |
| N10  | 0.3432 (8)  | 0.5242 (3)   | 0.40170 (19)  | 0.0655 (13) |
| 01   | 0.5078 (10) | 0.2236 (2)   | 0.0698 (2)    | 0.113 (2)   |
| O2   | 0.4290 (11) | 0.2639 (3)   | -0.0144 (3)   | 0.131 (3)   |
| O3   | 0.6682 (7)  | 0.4835 (2)   | -0.06244 (15) | 0.0756 (13) |
| O4   | 0.7010 (6)  | 0.55727 (18) | 0.00612 (15)  | 0.0638 (11) |
| O5   | 0.4936 (9)  | 0.5039 (2)   | 0.20295 (17)  | 0.0990 (18) |
| O6   | 0.5771 (9)  | 0.4075 (2)   | 0.23366 (16)  | 0.0894 (16) |
| O7   | 0.4331 (5)  | 0.31289 (16) | 0.15760 (15)  | 0.0548 (9)  |
| O8   | 0.2527 (13) | 0.3065 (2)   | 0.5306 (2)    | 0.134 (3)   |
| O9   | 0.1711 (11) | 0.3505 (3)   | 0.6100 (2)    | 0.135 (3)   |
| O10  | 0.4597 (7)  | 0.5618 (2)   | 0.65896 (16)  | 0.0778 (13) |
| 011  | 0.4817 (7)  | 0.6368 (2)   | 0.59179 (19)  | 0.0726 (12) |
| O12  | 0.3750 (12) | 0.4856 (3)   | 0.36221 (18)  | 0.133 (3)   |
| O13  | 0.3162 (10) | 0.5829 (2)   | 0.39161 (17)  | 0.0992 (19) |
| O14  | 0.2484 (7)  | 0.39015 (19) | 0.43756 (15)  | 0.0724 (12) |
| N11  | 0.6450 (16) | 0.3457 (5)   | 0.6714 (3)    | 0.164 (4)   |
| C24  | 0.7279 (13) | 0.2882 (4)   | 0.5744 (3)    | 0.087 (2)   |
| H24A | 0.8665      | 0.2833       | 0.5714        | 0.130*      |
| H24B | 0.6812      | 0.3147       | 0.5419        | 0.130*      |
| H24C | 0.6678      | 0.2446       | 0.5733        | 0.130*      |
| C25  | 0.6803 (11) | 0.3209 (4)   | 0.6291 (3)    | 0.085 (2)   |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$  | $U^{33}$  | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|------------|-----------|-----------|------------|------------|------------|
| C1  | 0.099 (5)  | 0.070 (4) | 0.053 (3) | 0.017 (4)  | -0.012 (3) | 0.011 (3)  |
| C2  | 0.057 (4)  | 0.044 (3) | 0.056 (3) | -0.001 (3) | 0.005 (3)  | 0.000 (2)  |
| C3  | 0.039 (3)  | 0.042 (3) | 0.060 (3) | 0.000 (2)  | 0.000 (2)  | -0.005 (2) |
| C4  | 0.046 (3)  | 0.042 (3) | 0.044 (3) | 0.009 (2)  | 0.000 (2)  | -0.011 (2) |
| C5  | 0.053 (3)  | 0.071 (4) | 0.060 (3) | -0.002 (3) | -0.006 (3) | -0.017 (3) |
| C6  | 0.049 (3)  | 0.049 (3) | 0.036 (2) | -0.002 (2) | 0.007 (2)  | -0.009 (2) |
| C7  | 0.067 (4)  | 0.055 (3) | 0.071 (3) | -0.024 (3) | -0.027 (3) | 0.014 (3)  |
| C8  | 0.055 (4)  | 0.079 (5) | 0.091 (4) | -0.004 (4) | -0.004 (4) | 0.039 (4)  |
| C9  | 0.074 (4)  | 0.045 (3) | 0.028 (2) | -0.019 (3) | 0.007 (2)  | -0.001 (2) |
| C10 | 0.199 (10) | 0.048 (3) | 0.082 (4) | 0.023 (5)  | 0.029 (6)  | -0.002 (3) |
| C11 | 0.130 (6)  | 0.072 (4) | 0.050 (3) | -0.048 (4) | -0.023 (4) | 0.008 (3)  |
| C12 | 0.032 (3)  | 0.037 (2) | 0.052 (3) | 0.006 (2)  | 0.002 (2)  | 0.008 (2)  |
| C13 | 0.041 (3)  | 0.035 (2) | 0.062 (3) | -0.001 (2) | 0.002 (2)  | 0.002 (2)  |
| C14 | 0.039 (3)  | 0.051 (3) | 0.048 (3) | 0.000 (2)  | 0.006 (2)  | -0.005 (2) |

| C15 | 0.037 (3)  | 0.041 (2) | 0.041 (2)   | 0.003 (2)    | 0.002 (2)    | 0.004 (2)    |
|-----|------------|-----------|-------------|--------------|--------------|--------------|
| C16 | 0.033 (3)  | 0.032 (2) | 0.054 (3)   | 0.005 (2)    | -0.002 (2)   | -0.002 (2)   |
| C17 | 0.029 (2)  | 0.041 (2) | 0.046 (2)   | 0.005 (2)    | 0.000 (2)    | 0.004 (2)    |
| C18 | 0.039 (3)  | 0.055 (3) | 0.039 (2)   | -0.003 (2)   | -0.004 (2)   | -0.007 (2)   |
| C19 | 0.047 (3)  | 0.041 (3) | 0.044 (2)   | -0.007 (2)   | -0.003 (2)   | 0.000 (2)    |
| C20 | 0.038 (3)  | 0.062 (3) | 0.032 (2)   | 0.003 (2)    | 0.001 (2)    | 0.006 (2)    |
| C21 | 0.032 (3)  | 0.046 (3) | 0.042 (2)   | -0.002 (2)   | -0.001 (2)   | -0.009 (2)   |
| C22 | 0.031 (3)  | 0.050 (3) | 0.041 (2)   | -0.003 (2)   | 0.006 (2)    | -0.001 (2)   |
| C23 | 0.041 (3)  | 0.058 (3) | 0.036 (2)   | -0.003 (2)   | 0.000 (2)    | 0.004 (2)    |
| N1  | 0.065 (3)  | 0.035 (2) | 0.041 (2)   | 0.012 (2)    | 0.000 (2)    | 0.0040 (17)  |
| N2  | 0.038 (2)  | 0.041 (2) | 0.042 (2)   | 0.0032 (18)  | 0.0031 (18)  | -0.0053 (16) |
| N3  | 0.050 (3)  | 0.042 (2) | 0.0368 (19) | -0.010 (2)   | -0.0022 (18) | 0.0012 (17)  |
| N4  | 0.085 (4)  | 0.045 (2) | 0.049 (2)   | 0.012 (3)    | 0.017 (3)    | 0.0088 (19)  |
| N5  | 0.070 (4)  | 0.045 (3) | 0.093 (4)   | -0.006 (3)   | 0.015 (3)    | -0.013 (3)   |
| N6  | 0.042 (2)  | 0.054 (3) | 0.047 (2)   | 0.004 (2)    | 0.004 (2)    | 0.008 (2)    |
| N7  | 0.065 (3)  | 0.055 (3) | 0.047 (2)   | 0.009 (2)    | 0.002 (2)    | 0.006 (2)    |
| N8  | 0.090 (4)  | 0.062 (3) | 0.057 (3)   | -0.016 (3)   | -0.013 (3)   | 0.004 (2)    |
| N9  | 0.038 (2)  | 0.063 (3) | 0.051 (2)   | -0.003 (2)   | 0.001 (2)    | -0.020 (2)   |
| N10 | 0.084 (4)  | 0.075 (3) | 0.038 (2)   | -0.008 (3)   | -0.005 (2)   | 0.005 (2)    |
| O1  | 0.173 (6)  | 0.043 (2) | 0.124 (4)   | -0.007 (3)   | 0.060 (4)    | 0.000 (3)    |
| O2  | 0.188 (7)  | 0.077 (3) | 0.127 (5)   | -0.027 (4)   | -0.055 (5)   | -0.032 (3)   |
| O3  | 0.108 (4)  | 0.076 (3) | 0.043 (2)   | -0.006 (3)   | 0.010 (2)    | 0.0103 (19)  |
| O4  | 0.085 (3)  | 0.042 (2) | 0.064 (2)   | -0.010 (2)   | 0.002 (2)    | 0.0109 (17)  |
| O5  | 0.161 (5)  | 0.070 (3) | 0.066 (2)   | 0.049 (3)    | 0.004 (3)    | -0.013 (2)   |
| O6  | 0.156 (5)  | 0.065 (2) | 0.047 (2)   | 0.006 (3)    | -0.013 (3)   | 0.0113 (19)  |
| 07  | 0.051 (2)  | 0.050 (2) | 0.063 (2)   | -0.0072 (18) | 0.0027 (18)  | 0.0188 (17)  |
| 08  | 0.240 (8)  | 0.055 (3) | 0.106 (4)   | -0.033 (4)   | 0.013 (5)    | -0.006 (3)   |
| 09  | 0.224 (8)  | 0.120 (4) | 0.060 (3)   | -0.100 (5)   | 0.000 (4)    | 0.027 (3)    |
| O10 | 0.090 (3)  | 0.100 (3) | 0.044 (2)   | -0.009 (3)   | -0.008 (2)   | -0.019 (2)   |
| O11 | 0.079 (3)  | 0.054 (2) | 0.085 (3)   | -0.013 (2)   | 0.003 (2)    | -0.022 (2)   |
| O12 | 0.234 (8)  | 0.122 (4) | 0.043 (2)   | 0.001 (5)    | 0.016 (4)    | -0.010 (3)   |
| O13 | 0.157 (6)  | 0.078 (3) | 0.063 (2)   | -0.018 (3)   | -0.031 (3)   | 0.024 (2)    |
| O14 | 0.100 (3)  | 0.064 (2) | 0.053 (2)   | -0.013 (3)   | -0.013 (2)   | -0.0145 (18) |
| N11 | 0.223 (11) | 0.178 (8) | 0.091 (5)   | 0.074 (8)    | 0.045 (6)    | -0.015 (5)   |
| C24 | 0.086 (5)  | 0.095 (5) | 0.079 (4)   | 0.002 (4)    | 0.009 (4)    | -0.002 (4)   |
| C25 | 0.090 (5)  | 0.090 (5) | 0.076 (4)   | 0.028 (4)    | 0.013 (4)    | 0.012 (4)    |
|     |            |           |             |              |              |              |

## Geometric parameters (Å, °)

| C1—N1  | 1.485 (6) | C13—N5   | 1.462 (6) |
|--------|-----------|----------|-----------|
| C1—H1A | 0.9600    | C14—C15  | 1.394 (6) |
| C1—H1B | 0.9600    | C14—H14A | 0.9300    |
| C1—H1C | 0.9600    | C15—C16  | 1.380 (6) |
| C2—C3  | 1.326 (7) | C15—N6   | 1.436 (6) |
| C2—N1  | 1.385 (7) | C16—C17  | 1.363 (6) |
| C2—H2A | 0.9300    | C16—H16C | 0.9300    |
| C3—N2  | 1.389 (6) | C17—N7   | 1.462 (6) |
| С3—НЗА | 0.9300    | C18—O14  | 1.227 (5) |
| C4—N1  | 1.318 (6) | C18—C19  | 1.460 (6) |

| C4—N2      | 1.352 (6) | C18—C23      | 1.471 (7) |
|------------|-----------|--------------|-----------|
| C4—C5      | 1.465 (8) | C19—C20      | 1.361 (6) |
| C5—H5A     | 0.9600    | C19—N8       | 1.443 (6) |
| С5—Н5В     | 0.9600    | C20—C21      | 1.382 (6) |
| С5—Н5С     | 0.9600    | C20—H20A     | 0.9300    |
| C6—N3      | 1.456 (6) | C21—C22      | 1.381 (6) |
| C6—N2      | 1.459 (5) | C21—N9       | 1.438 (6) |
| С6—Н6А     | 0.9700    | C22—C23      | 1.361 (6) |
| С6—Н6В     | 0.9700    | C22—H22A     | 0.9300    |
| С7—С8      | 1.317 (8) | C23—N10      | 1.439 (6) |
| C7—N3      | 1.372 (7) | N5—O2        | 1.211 (7) |
| С7—Н7А     | 0.9300    | N5—O1        | 1.213 (7) |
| C8—N4      | 1.365 (8) | N6—O3        | 1.218 (5) |
| C8—H8A     | 0.9300    | N6—O4        | 1.226 (5) |
| C9—N3      | 1.335 (6) | N7—O6        | 1.207 (5) |
| C9—N4      | 1.337 (7) | N7—O5        | 1.209 (5) |
| C9—C11     | 1.464 (8) | N8—O8        | 1.182 (6) |
| C10—N4     | 1.471 (7) | N8—O9        | 1.205 (6) |
| C10—H10A   | 0.9600    | N9—O10       | 1.214 (5) |
| C10—H10B   | 0.9600    | N9—O11       | 1.222 (6) |
| C10—H10C   | 0.9600    | N10—O12      | 1.197 (6) |
| C11—H11A   | 0.9600    | N10—O13      | 1.204 (6) |
| C11—H11B   | 0.9600    | N11—C25      | 1.103 (8) |
| C11—H11C   | 0.9600    | C24—C25      | 1.435 (9) |
| C12—O7     | 1.234 (5) | C24—H24A     | 0.9600    |
| C12—C17    | 1.448 (6) | C24—H24B     | 0.9600    |
| C12—C13    | 1.451 (7) | C24—H24C     | 0.9600    |
| C13—C14    | 1.360 (6) |              |           |
| N1—C1—H1A  | 109.5     | C17—C16—H16C | 120.0     |
| N1—C1—H1B  | 109.5     | C15—C16—H16C | 120.0     |
| H1A—C1—H1B | 109.5     | C16—C17—C12  | 125.1 (4) |
| N1—C1—H1C  | 109.5     | C16—C17—N7   | 115.9 (4) |
| H1A—C1—H1C | 109.5     | C12—C17—N7   | 119.0 (4) |
| H1B—C1—H1C | 109.5     | O14—C18—C19  | 124.6 (5) |
| C3—C2—N1   | 107.2 (5) | O14—C18—C23  | 125.0 (4) |
| C3—C2—H2A  | 126.4     | C19—C18—C23  | 110.3 (4) |
| N1—C2—H2A  | 126.4     | C20—C19—N8   | 116.0 (4) |
| C2—C3—N2   | 107.2 (5) | C20—C19—C18  | 124.8 (4) |
| С2—С3—НЗА  | 126.4     | N8—C19—C18   | 119.3 (4) |
| N2—C3—H3A  | 126.4     | C19—C20—C21  | 119.9 (4) |
| N1—C4—N2   | 107.0 (4) | C19—C20—H20A | 120.0     |
| N1—C4—C5   | 126.0 (5) | C21—C20—H20A | 120.0     |
| N2—C4—C5   | 126.9 (5) | C22—C21—C20  | 120.4 (4) |
| C4—C5—H5A  | 109.5     | C22—C21—N9   | 120.0 (4) |
| C4—C5—H5B  | 109.5     | C20—C21—N9   | 119.5 (4) |
| H5A—C5—H5B | 109.5     | C23—C22—C21  | 119.9 (4) |
| C4—C5—H5C  | 109.5     | C23—C22—H22A | 120.1     |
| H5A—C5—H5C | 109.5     | C21—C22—H22A | 120.1     |
| H5B—C5—H5C | 109.5     | C22—C23—N10  | 117.5 (4) |

| N3—C6—N2      | 111.2 (4) | C22—C23—C18   | 124.6 (4) |
|---------------|-----------|---------------|-----------|
| N3—C6—H6A     | 109.4     | N10-C23-C18   | 118.0 (4) |
| N2—C6—H6A     | 109.4     | C4—N1—C2      | 109.9 (4) |
| N3—C6—H6B     | 109.4     | C4—N1—C1      | 125.8 (5) |
| N2—C6—H6B     | 109.4     | C2—N1—C1      | 124.2 (5) |
| Н6А—С6—Н6В    | 108.0     | C4—N2—C3      | 108.6 (4) |
| C8—C7—N3      | 106.6 (5) | C4—N2—C6      | 128.0 (4) |
| С8—С7—Н7А     | 126.7     | C3—N2—C6      | 123.4 (4) |
| N3—C7—H7A     | 126.7     | C9—N3—C7      | 109.9 (5) |
| C7—C8—N4      | 108.2 (6) | C9—N3—C6      | 126.4 (4) |
| С7—С8—Н8А     | 125.9     | C7—N3—C6      | 123.7 (4) |
| N4—C8—H8A     | 125.9     | C9—N4—C8      | 109.1 (4) |
| N3—C9—N4      | 106.2 (5) | C9—N4—C10     | 126.2 (6) |
| N3—C9—C11     | 126.9 (6) | C8—N4—C10     | 124.7 (7) |
| N4—C9—C11     | 126.9 (5) | O2—N5—O1      | 123.5 (5) |
| N4            | 109.5     | O2—N5—C13     | 117.5 (5) |
| N4-C10-H10B   | 109.5     | O1—N5—C13     | 118.9 (5) |
| H10A—C10—H10B | 109.5     | O3—N6—O4      | 122.8 (4) |
| N4—C10—H10C   | 109.5     | O3—N6—C15     | 118.6 (4) |
| H10A-C10-H10C | 109.5     | O4—N6—C15     | 118.6 (4) |
| H10B-C10-H10C | 109.5     | O6—N7—O5      | 122.6 (4) |
| C9—C11—H11A   | 109.5     | O6—N7—C17     | 119.0 (4) |
| C9—C11—H11B   | 109.5     | O5—N7—C17     | 118.4 (4) |
| H11A—C11—H11B | 109.5     | O8—N8—O9      | 120.6 (5) |
| С9—С11—Н11С   | 109.5     | O8—N8—C19     | 120.4 (5) |
| H11A-C11-H11C | 109.5     | O9—N8—C19     | 119.0 (5) |
| H11B-C11-H11C | 109.5     | O10—N9—O11    | 122.3 (4) |
| O7—C12—C17    | 123.9 (4) | O10—N9—C21    | 119.4 (5) |
| O7—C12—C13    | 125.4 (4) | O11—N9—C21    | 118.3 (4) |
| C17—C12—C13   | 110.6 (4) | O12—N10—O13   | 120.6 (5) |
| C14—C13—C12   | 124.9 (4) | O12—N10—C23   | 121.1 (5) |
| C14—C13—N5    | 116.5 (5) | O13—N10—C23   | 118.2 (5) |
| C12—C13—N5    | 118.6 (4) | C25—C24—H24A  | 109.5     |
| C13—C14—C15   | 119.9 (4) | C25—C24—H24B  | 109.5     |
| C13—C14—H14A  | 120.0     | H24A—C24—H24B | 109.5     |
| C15—C14—H14A  | 120.0     | C25—C24—H24C  | 109.5     |
| C16-C15-C14   | 119.5 (4) | H24A—C24—H24C | 109.5     |
| C16—C15—N6    | 119.9 (4) | H24B—C24—H24C | 109.5     |
| C14—C15—N6    | 120.6 (4) | N11—C25—C24   | 179.3 (9) |
| C17—C16—C15   | 120.0 (4) |               |           |



